Module math. Power and logarithmic functions
Contents
- 1. Function math.exp(x). Exponent raised to the power x
- 2. Function math.expm1(x). Exponent from x minus 1
- 3. Function math.log(x). Natural logarithm
- 4. Function math.log1p(x). Logarithm for values close to zero
- 5. Function math.log2(x). Logarithm with base 2
- 6. Function math.log10(x). Decimal logarithm
- 7. Function math.pow(x, y). Exponentiation
- 8. Function math.sqrt(x). Square root
- Related topics
Search other websites:
1. Function math.exp(x). Exponent raised to the power x
The math.exp(x) function raises the number e to the power of x. The function returns the result of a real type. The argument x can be an integer or a real type. Exponential value: e = 2.718281… serves as the basis of the natural logarithm.
In Python, the math.exp(x) function can be replaced with other expressions
- math.e ** x – here math.e is a constant equal to the value of the exponent.
- pow(math.e, x) – here pow() is a built-in function of the Python language.
Example.
# Function math.exp(x) import math y = math.exp(1) # y = 2.718281828459045 x = 0.0 y = math.exp(x) # y = 1.0 x = 3.85 y = math.exp(x) # y = 46.993063231579285
⇑
2. Function math.expm1(x). Exponent from x minus 1
The math.expm1(x) function calculates the value of the exp(x)-1 expression. When calculating the value of some y, the function call
y = math.expm1(x)
can be replaced by the expression
y = math.exp(x)-1
However, using the math.expm1(x) function will give a more accurate calculation result. This is the main purpose of this function.
Example.
# Function math.expm1(x) import math x = 1.0 y = math.expm1(x) # y = 1.718281828459045 y = math.expm1(0.0) # y = 0.0
⇑
3. Function math.log(x). Natural logarithm
The math.log(x) function is designed to calculate the natural logarithm of a number with a given base.
The general form of the function is as follows
math.log(x [, base])
here
- x – the argument for which the logarithm is calculated;
- base – base of the logarithm. This function parameter is optional. If the base parameter is absent, then the number e = 2.718281…
If you try to call the log(0.0) function, the Python interpreter will throw an error
ValueError: math domain error
since the logarithm of zero does not exist.
Example.
# Function math.log(x) import math x = 1.0 y = math.log(x) # y = 0.0
⇑
4. Function math.log1p(x). Logarithm for values close to zero
The log1p(x) function returns the natural logarithm of 1 + x. The basis of the logarithm is the exponent e = 2.718281… The function is necessary in cases when the value of argument x approaches zero. As you know, the logarithm of zero does not exist. To avoid an exception, this function is introduced.
Example.
# Function math.log1p(x) import math x = 0.0000001 y = math.log1p(x) # y = 9.999999500000032e-08
⇑
5. Function math.log2(x). Logarithm with base 2
The math.log2(x) function has been introduced since Python 3.3 and returns the logarithm of the argument x with base 2. The function was introduced in order to increase the accuracy of calculations in comparison with the function math.log(x, 2). The argument x can be either an integer or a real type.
Example.
# Function math.log2(x) import math x = 2 y = math.log2(x) # y = 1.0 x = 16 y = math.log2(x) # y = 4.0
⇑
6. Function math.log10(x). Decimal logarithm
The math.log10(x) function returns the logarithm of x with base 10 (base = 10). The function gives a more accurate result compared to calling the math.log(x, 10) function. The argument x can be either an integer or a real type.
Example.
# Function math.log10(x) import math x = 10 y = math.log10(x) # y = 1.0 x = 100 y = math.log10(x) # y = 2.0 x = 10.00001 y = math.log10(x) # y = 1.0000004342942648
⇑
7. Function math.pow(x, y). Exponentiation
The math.pow (x, y) function raises x to the power of y. The arguments x, y can be of integer or real type. Operands of complex type are not supported.
Features of calculating the result:
- the result of pow(1.0, y) will always be 1.0;
- the result of pow (0.0, y) will always be 1.0.
In contrast to the operation ** (exponentiation), the function math.pow(x, y) integer operands converts to the real type float.
Example.
# Function math.pow(x, y) import math # for integer operands x = 3 y = 4 z = math.pow(x, y) # z = 81.0 - real result # for floating point operands x = 2.5 y = 1.5 z = math.pow(x, y) # z = 3.952847075210474 # negative numbers x = -2 y = -3 z = math.pow(x, y) # z = -0.125 x = -2.0 y = 3.0 z = math.pow(x, y) # z = -8.0 # operator ** z = (-2) ** 3 # z = -8 - the result of integer type
⇑
8. Function math.sqrt(x). Square root
The math.sqrt(x) function computes the square root of the argument x. The function returns the result of a real type. The value of x can be positive or zero. If x is negative, the interpreter will display an error message
math domain error
Example.
# Function math.sqrt(x) import math # for integer numbers x = 81 y = math.sqrt(x) # y = 9.0 x = -0.0 y = math.sqrt(x) # y = -0.0 x = 2.0 y = math.sqrt(x) # y = 1.4142135623730951
⇑
Related topics
- Number-theoretic and representation functions
- Trigonometric functions
- Hyperbolic functions
- Special functions and constants
⇑