Module random. Random number generation. Classes Random, SystemRandom. Bookkeeping functions. Functions for integers
Contents
- 1. Purpose and connection of the random module. Categories of processed numbers
- 2. The purpose of Random and SystemRandom classes
- 3. Function random(). Example
- 4. Bookkeeping functions
- 5. Functions for integers
- Related topics
Search other websites:
1. Purpose and connection of the random module. Categories of processed numbers
The random module implements tools that allow you to generate pseudo-random numbers. The functions of the random module process the following categories of numbers:
- integers;
- sequences of numbers;
- real numbers (floating point numbers).
Also, the random module implements various additional means of generating random numbers.
To use functions from the random module, you first need to include this module using the command
import random
⇑
2. The purpose of Random and SystemRandom classes
To work with random numbers in the random module, two main hidden classes can be distinguished:
- class Random;
- class SystemRandom.
The instance of the Random class provides all the necessary functions. To obtain generators independent of the current state of an instance of the Random class, you can create your own instances of this class. To get your own number generator, you need to override the methods of the Random class: random(), seed(), getstate() and setstate().
The SystemRandom class contains the os.urandom() system function, which generates random numbers from sources provided by the operating system.
⇑
3. Function random(). Example
All Python functions are based on the use of the random() function, which generates a floating-point number in the semi-open range [0.0, 1.0].
The random() function uses the so-called Mersenne Twister, which is based on the properties of Mersenne primes. The study of this method of generating random numbers can be found in other sources. The generator gives a value with an accuracy of 53 digits and has a period of 2 ** 19937-1.
Example. In the example, a random number is written to the variable x using the random() function
# include the random module import random # generate a random number x = random.random() # x = 0.016419749852326193
⇑
4. Bookkeeping functions
4.1. Function random.seed(). Example
The random.seed() function initializes a random number generator. The function has the following general form
random.seed(a = None, version = 2)
here
- a – integer value from which to start generating random numbers. If parameter a is omitted, then the current system time is used. System time can be obtained from the operating system using the os.urandom() function;
- version – a parameter that can take one of two values: version = 2 (default) and version = 1. If version = 2 (by default), then the str, bytes or bytearray object is converted to int, and all its bits are used. In version = 1 mode, it is assumed that sequences are used for older versions of Python, and therefore the algorithm for types str and bytes generates a narrower range of seed numbers.
Example.
# Function random.seed() - initializes random number generator # include random module import random # Case 1. The function uses the number 5 to generate a sequence. random.seed(5) x = random.random() # x = 0.6229016948897019 y = random.random() # y = 0.7417869892607294 random.seed(5) # the same numbers as in x, y - the values are repeated z = random.random() # z = 0.6229016948897019 v = random.random() # v = 0.7417869892607294 # Case 2. The function uses the system time to generate a sequence. # System time is constantly changing random.seed() x = random.random() # x = 0.7662531463810477 y = random.random() # y = 0.9435964177952566 random.seed() # the values of x, y, z, v are different z = random.random() # z = 0.927815953637931 v = random.random() # v = 0.9508059701409717
The above code clearly demonstrates the role of the random.seed() function in generating a sequence of random numbers using the random() function as an example. Two cases of using the random.seed() function are considered:
- with integer parameter 5;
- without parameter.
In the first case, the function receives parameter 5 twice
random.seed(5)
As a result, the sequence of random numbers is repeated. The values of the variables x, y are the same as the values of the variables z, v.
In the second case, the function does not use the parameter
random.seed()
In this case, the first random number is obtained from the system time, which is constantly changing. As a result, the values of the variables x, y, z, v will be different.
⇑
4.2. Functions random.getstate() and random.setstate(). Example
Using the random.getstate() function, you can save the internal state of the random number generator as an object
objName = random.getstate()
where objName – the name of object.
Using the random.setstate() function, you can restore the internal state of the random number generator that was previously saved by the random.getstate() function. The general form of calling the random.setstate() function is as follows
random.setstate(objName)
where objName – name of the object in which the state of the generator is previously stored.
Example.
# Functions random.getstate(), random.setstate() # include random module import random random.seed() # initialize the generator with some initial value obj = random.getstate() # save the state in obj object x = random.random() # get a random number # initialize the generator with a different initial value random.seed() # we obtain a new sequence of random numbers random.setstate(obj) # restore state from object 'obj' y = random.random() # get previously saved number # output the result print('x =', x) print('y =', y)
The result of the program
x = 0.2056527930645382 y = 0.2056527930645382
As can be seen from the result, the x and y values are repeated. This means that by calling a function
random.setstate(obj)
it is possible to restore a sequence of random numbers (state), which was previously stored in the obj object by calling
obj = random.getstate()
The example intentionally creates a new sequence of random numbers by calling
random.seed()
in order to modify a previously created sequence.
⇑
4.3. Function random.getrandbits(). Example
The random.getrandbits() function returns an integer from the range, which is formed by the number of bits.
random.getrandbits(k)
where k – the number of bits of an integer that take part in the formation of a random value.
If k = 3, then numbers from the range 0..7 or (2**3-1) are obtained. If k = 8, then numbers from the range 0..2**8-1 or 0..255 are obtained.
Example.
# Function random.getrandbits() # include the random module import random # Case 1. Number of bits = 4 print('Number of bits = 4') i = 0 while i<10: x = random.getrandbits(4) # numbers in the range 0..2**4 => 0..15 print(x, ' ') i=i+1 # Case 2. Number of bits = 5 print('Number of bits = 5') i = 0 while i<10: x = random.getrandbits(5) # numbers in the range 0..2**5 => 0..32 print(x, ' ') i=i+1
The result of the program
Number of bits = 4 5 5 15 6 11 2 10 14 12 0 Number of bits = 5 4 9 4 18 28 19 5 29 17 31
⇑
5. Functions for integers
5.1. Function random.randrange(). Setting a range of random values
The random.randrange() function sets the range of values within which a random number is generated by the random.randint() function. The function has several implementations:
random.randrange(stop) random.randrange(start, stop [, step])
where
- stop – a numeric integer value defining the largest number that can be generated (upper bound of the range);
- start – a numeric integer value defining the smallest number that can be generated (lower bound of the range);
- step – a value that sets the difference (step) between two adjacent possible values of random numbers. That is, random numbers are multiples of the value of step. For example, if step = 4, then random numbers will be a multiple of 4: 8, 16, 40, 28 …
Example. The example demonstrates the operation of the random.randrange() function for a different number of parameters.
# Function random.randrange() # include random module import random # Case 1. With two parameters # generating 5 random integers in the range [0, 19] print('Function random.randrange(0,20)') i=0 while i<5: d = random.randrange(0,20) print(d) i = i+1 print # Case 2. With one parameter # generating 5 random integers in the range [0, 9] print('Function random.randrange(10)') i=0 while i<5: d = random.randrange(10) # random.randrange(9+1) print(d) i = i+1 print # Case 3. With three parameters # generated numbers multiples of 3 print('Function random.randrange(0,20,3)') i=0 while i<5: d = random.randrange(0,20,3) print(d) i = i+1
The result of the program
Function random.randrange(0,20) 6 7 18 9 7 Function random.randrange(10) 1 0 1 0 7 Function random.randrange(0,20,3) 6 3 0 12 15
⇑
5.2. Function random.randint(). Getting an integer random number
The random.randint() function returns a random integer N that is within the boundaries of [a, b], that is,
a <= N <= b
Example.
# Function random.randint() # include random module import random # print 10 numbers in the range [200..300] i=0 while i<10: d = random.randint(200,300) print(d) i = i+1
The result of the program
231 281 286 211 250 200 256 232 203 242
⇑
Related topics
⇑