Complex numbers. The cmath module. Functions for converting to polar coordinates and vice versa. Power and logarithmic functions
Contents
- 1. Functions to convert to polar coordinates and vice versa
- 2. Power and logarithmic functions
- Related topics
Search other resources:
1. Functions to convert to polar coordinates and vice versa
Python has 3 functions that work with polar coordinates:
- cmath.phase(x) – returns the phase from the x argument as a float;
- cmath.polar() – returns the representation of x in polar coordinates;
- cmath.rect() – returns a complex number from polar coordinates.
⇑
1.1. Function cmath.phase(). Get the phase of a complex number
Function
cmath.phase(x)
returns the phase of a complex number x. The function is equivalent to calling
cmath.atan2(x.imag, x.real)
The result of the function is in the range from –π to π.
Example.
# Include the cmath module import cmath # Function cmath.phase(x) # Create a complex number x = complex(2, -3) # x = 2 - 3*j # Call the function res = cmath.phase(x) # Display the result print("res = ", res)
Program result
res = -0.982793723247329
⇑
1.2. Function cmath.polar(). Get a polar representation of a complex number
Function
cmath.polar(x)
returns a polar representation of x. The function returns a pair (r, phi), where r is the modulus of x and phi is the phase of x.
Calling a function is equivalent to calling
(abs(x), phase(x))
Example.
# Include the cmath module import cmath # Function cmath.polar(x) # Create a complex number x = complex(1, -1) # x = 1 - 1*j # Call the function res = cmath.polar(x) # Display the result print("res = ", res)
Program result
res = (1.4142135623730951, -0.7853981633974483)
⇑
1.3. Function cmath.rect(). Get complex number based on polar coordinates
Function
cmath.rect(r, phi)
allows you to get a complex number based on the modulus r and the phase phi. Calling a function is equivalent to calling
r * (math.cos(phi) + math.sin(phi)*1j)
Example.
# Include cmath module import cmath # Function cmath.rect(x) # Create a complex number as polar coordinates r = 4 # modulus of number phi = 1.2 # phase in radians # Invoke the function x = cmath.rect(r, phi) # Display the result print("x = ", x)
Program result
x = (1.4494310179066945+3.728156343868905j)
⇑
2. Power and logarithmic functions
The cmath module implements the following power and logarithmic functions that operate on complex numbers:
- cmath.exp(x) – returns the exponent of e raised to the power of x, where x can be a complex number. The exponent e is the basis of the natural logarithm;
- cmath.log(x) – returns the natural logarithm of the x argument with a given base;
- cmath.log10(x) – returns the base 10 logarithm of the x argument;
- cmath.sqrt(x) – returns the square root of the x argument.
⇑
2.1. Function cmath.exp(). Exponent of a complex number
Function
cmath.exp(x)
returns the number e raised to the power of x. The e value is the basis of the natural logarithm. The x value is a complex number.
Example.
# Include the cmath module import cmath # Function cmath.exp(x) # Create a complex number re = float(input("re = ")) im = float(input("im = ")) x = complex(re, im) # Call the function res = cmath.exp(x) # Display the result print("res = ", res)
Test example
re = 1 im = 0 res = (2.718281828459045+0j)
⇑
2.2. Function cmath.log(). Logarithm of a complex number
Function
cmath.log(x [, base])
returns the logarithm of a complex number x with the specified base. If base is not specified, then the natural logarithm of the complex number x is returned.
Example.
# Include the cmath module import cmath # Function cmath.log() # Create a complex number re = float(input("re = ")) im = float(input("im = ")) x = complex(re, im) # Call function for natural logarithm res1 = cmath.log(x) print("res1 = ", res1) # Call the function for the base 4 logarithm res2 = cmath.log(x, 4) print("res2 = ", res2)
Test example
re = 1 im = -3 res1 = (1.151292546497023-1.2490457723982544j) res2 = (0.8304820237218407-0.9009960708411433j)
⇑
2.3. Function cmath.log10(). Decimal logarithm
Function
cmath.log10(x)
returns the base 10 logarithm of a complex number x.
Example.
# Include the cmath module import cmath # Function cmath.log10() # Create a complex number re = float(input("re = ")) im = float(input("im = ")) x = complex(re, im) # Call the function for the decimal logarithm res = cmath.log10(x) print("res = ", res)
Test example
re = 1 im = -5 res = (0.707486673985409-0.5964603745259144j)
⇑
2.4. Function cmath.sqrt(). Square root of the number x
Function
cmath.sqrt(x)
returns the square root of a complex number x.
Example.
# Include the cmath module import cmath # Function cmath.sqrt() # Create a complex number re = float(input("re = ")) im = float(input("im = ")) x = complex(re, im) # Call the function for the decimal logarithm res = cmath.sqrt(x) print("res = ", res)
Test example
re = 2 im = -3 res = (1.6741492280355401-0.8959774761298381j)
⇑
Related topics
- Complex numbers. The cmath module. Creation of a complex numbers. The complex class. Functions and constants of the cmath module
- Trigonometric functions. Hyperbolic functions. Classification functions
⇑